Attacking Client Side JIT Compilers

October 10,201 |
Revision 1.3
http://www.matasano.com/research/jit/

http://www.matasano.com/research/jit/
http://www.matasano.com/research/jit/

Introduction

Chris Rohlf - Principal Security Consultant
@chrisrohlt

chris@matasano.com

Yan lvnitskiy - Senior Security Consultant

@yan
yan@matasano.com

P

/

http://www.matasano.com/research

S ECURITY

Overview

* Introduction

e Firefox JIT(s)

o LLVM JIT

e Code Emission Bugs

e Exploitation Primitives

* Runtime Hardening

* Engine Comparison

* Our Tools and Techniques

P
4

/

S ECURITY

Introduction to JITs

® [nterpreters and JIT Engines

® Parse high level languages
® Generate bytecode

® Optimize and compile bytecode to native code

® They are everywhere

® Browsers

® | anguage runtimes (Java, Ruby, C#)

P
s

| <

S ECURITY

Introduction to JITs

10 PRINT "HELLO WORLD"
20 GOTO 10

"Compiler”

Developer

%rbp User

Jorsp,7rbp

0x004 | (%erip),%rdi

$0x0000,%eax g
| Of “

0x10f36 /‘1’.

S ECURITY

Introduction to JITs

10 PRINT "HELLO WORLD"
20 6GOTO 10

"Compiler”

Developer

Jorbp

Jorsp,7rbp

0x004 | (%orip),%rdi

$0x0000,%eax g0z
| Of 4

0x10f36 /‘15

S ECURITY

Introduction to JITs

10 PRINT "HELLO WORLD" Developer
20 GOTO 10

"Compiler”

Jorbp

Jorsp,7rbp

0x004 | (%orip),%rdi

$0x0000,%eax g0z
| Of 4

0x10f36 /‘15

S ECURITY

Introduction to JITs

10 PRINT "HELLO WORLD" Developer

20 6GOTO 10

"Compiler"”

Lexer Parser IR .IR.
Generator Optimizer

Target
Generator

%rbp

Y%orsp,%rbp

0x0041 (%rip),%rdi

$0x0000,%eax .

0x10f36 gls
=

S ECURITY

Introduction to JITs

= new Array();

JSOP_NEWARRAY

S0x8963778, /edx
0x50(%ebx),%ecx
/ecx,0x14(7esp)
/esp,iecX

/ebx 0x1c§%esp)
S0x8962ec5,0x18(%esp)
0x8265670

Introduction to JITs

® Compilers and JITs have been around for a while and come in a
few different designs and architectures

Introduction to JITs

® Bytecode / Bitcode / Intermediate Representation (IR)

® Both trusted and untrusted
® Expressive and bloated (slower)
® Simple and slim (faster)

® Potentially usable to an attacker

® Overwrite bytecode

P
4

/

S ECURITY

Introduction to JITs

® Untrusted bytecode

® Can be delivered from untrusted sources

® Flash, CLR, LLVM

® Completely external to the compiler

® Trusted bytecode

® Produced internally by a trusted front end
® SpiderMonkey

® Still potentially usable to an attacker with control of the process ‘"Lfg

| <

S ECURITY

Introduction to JITs

® Tracing JIT design
® Only JIT CPU-intensive code
® Enables Optimizations

® Types are generally known from tracing

P
s

| <

S ECURITY

TraceMonkey f :’?)

® Introduced in Firefox 3.5

® Tracing JIT

® Uses NanoJIT as a backend assembler

P
‘I"e‘

/.-.

S ECURITY

TraceMonkey

® TraceMonkey JITs hot code blocks

® The recorder traces execution of SpiderMonkey IR

® 8 Iterations before TraceMonkey kicks in

® Produces trace trees

® Emits optimized LIR for NanoJIT to compile

® Doesn’t handle type changes well

P
‘I"e‘

/.-.

S ECURITY

TraceMonkey f J”)

® CodeAlloc class

® Handles allocating JIT pages that will hold code

® Allocates memory RWX

® Codelist class

® |nline meta-data for tracking the location of code chunks within JIT pages

,’4
§ls

"Q

/.-.

S ECURITY

Introduction to JITs

® Method

® JITs entire functions / methods
® Usually generates unoptimized code
® Not based on previous execution runs

® Slow type lookups are usually required

P
s

| <

S ECURITY

JaegerMonkey f”)

® Introduced in Firefox 4.0

® Method JIT

® Uses the Nitro assembler backend from WebKit
® SpiderMonkey bytecode——Native Code

® Uses an Inline Cache for handling type changes in property
accesses

P
4

/

S ECURITY

JaegerMonkey ' ’)

® Fast paths are native code emitted by the JIT

® Pure native code emitted by the JIT for predefined operations

® Slow paths are through the execution of bytecode

® |nline cache hits sometimes have to go back through slow bytecode execution

® Stub calls are into C++ code from JIT pages

® Typically exist to augment a fast path

P
s

| <

S ECURITY

JaegerMonkey /,.?)

® ExecutableAllocator class

® Handles allocating JIT pages to hold code

® Allocates memory RWX

® ExecutablePool class

® Manages the larger page size allocations into pools to hold native code

® Pools are chosen based on the size of code that needs to be stored

P
‘I"e‘

/.-.

S ECURITY

Inline Caching

® |nline Caching
® JavaScript is dynamically typed

® How do you JIT a generic function that handles multiple types?

function blah(var b) {
for(i=0; i<10; i++) {
b += 1:
s
s

blah(“hello”);
blah([0, 1, 2, 3]);

® Inline caches handle rewriting methods or property accesses at
runtime to handle different and unexpected types

P
4

/

S ECURITY

Inline Caching

function foo(arg) {

foo() foo() {
handle_bool

}

Intermediate

foo() foo() {

handle_bool

handle_int

}

T,
foo() foo() {
handle_bool a
handle_int "ILA
~ 4

handle_str ‘:

/

S ECURITY

® A suite of libraries, an instruction set, and a collection of tools
designed around compilation.

® A set of independent components from the start

® |nitially used GCC as a front end

® Now supports C, C++ and Objective-C natively

® Many other compiler projects now support LLVM
® Python, Ruby, Haskell, PHP, etc

® Popular for implementing compiler back ends "

=

/

S ECURITY

LM Y

Source

I
IR
IR

NETYE

mov eax, 0x1234
jmp -0x

Obiject
File

%
Ji=

I

S ECURITY

LM Y

Source

IR
IR

IR

Native

mov eax, 0x1234
jmp ~0x5

Obiject
File

%
Ji=

I

S ECURITY

® Typical integration progression:
® | have a project that compiles something
® Need to make it faster or
® Need a backend to actually produce native code.
® [ntegrate with LLVM!
124

4

/

S ECURITY

LLVM Integration

® "The LLVM JIT and You”

® Popular integration strategies

® Emit IR directly, create a Module

® MacRuby, GHC

® Have your own VM instruction set, translate instruction by instruction to LLVM
equivalents, then emit

® Rubinius, ClamAV

A
‘ﬂ’.':

| <

S ECURITY

LLVM JIT

® Assume a Module is created
® Connect a Module to an ExecutionEngine
® Request a handle to a function, ask the ExecutionEngine to run it

® ExecutionEngine emits code for the function, and stubs for all
outgoing calls to non-emitted code

P

/

S ECURITY

LLVM JIT

Platform Platform

Dependent Independent Resources

ExecutionEngine
JIT

JITState

X86/I TInfo

JITCodeEmitter JITMemoryManager

%
JLs

['Q

4

S ECURITY

JITs and Security

® Compiling traditional executables is typically done by developers

® Code compilation is a trust boundary

® You've accepted your vendor’s code and binary

® But now you're compiling my untrusted code

P

/

S ECURITY

Incorrect Code Emission

® JITs don't always produce perfect code
® Compiler bugs are often caught during development and testing

® What can happen when the JIT emits incorrect code?

§'a
4

7

S ECURITY

Incorrect Code Emission

® What usually triggers them?

® Type Confusion
® Use after free
® |nteger over/underflows (miscalculation of code paths)

® |ncorrect logic during code emission

® Should incorrect JIT code emissions be their own bug class?

® Depends on the root cause

® Not for us to decide, but should be debated oz

=

/

S ECURITY

Incorrect Code Emission

® Java x64 JIT bug patched on June 18th, 2011

® Intended code emission:

addq (%rsp),oxffffff2b ; add Oxffffff2b to the value at %rsp
popTq ; pop 64 bits from stack, load
» the lower 32 bits into RFLAGS

® Unintended code emission:

addqg S%rsp,Oxtfffff2b ; shift the stack pointer!
popTq ; pop 64 bits from stack+Oxffffff2b
; load the lower 32 bits into RFLAGS

P
4

/

S ECURITY

Incorrect Code Emission

® Many examples

® Mozilla Bugzilla ID 635295 (Firefox 4.0 Beta)
® Execution of an invalid branch due to an inline cache that existed for a free’'d object
® MS11-044 Microsoft .NET CLR JIT

® The JIT produced code that confused an object as NULL or non-NULL

® This was a great logic bug example!

P
4

/

S ECURITY

JIT Primitives + Traditional Bugs

® JIT engines can be:

® the source of vulnerabilities

® a means to exploit them

P
4

/

S ECURITY

Exploitation Primitives

® JITs introduce unique exploitation primitives that would
otherwise not be present in an application

® JIT Spray
® RWX Page Permissions

® Reusable code sequences at predictable addresses

P
4

/

S ECURITY

JIT Spray

® Dion Blazakis 2010

® Flash ActionScript

® Create enough constants to contain native shell code, link
together by semantic NOPs

® Transfer execution to mid-instruction, set up a stage 2, and
begin executing

® |'m told by people smarter than me you can do it in 2 bytes

P
4

/

S ECURITY

JIT Spray

® JIT Spray in Firefox through JaegerMonkey

® Not perfect, JaegerMonkey emits unoptimized code

® |ots of bytes in the way we can’t control

var constants = [0x12424242, 0x23434343, 0x34444444, 0x45454545, 0x56464646,
0x67474747, 0x78484848, /test/ |

0x40a05e: call 0x82d1820 NewInitArray
0x40a063: mov %eax,%edi

0x40a065: mov 0x24(%edi),%edi
0x40a068: movl $O0xffff0001,0x4(%edi)
0x40a06f: movl $0x12424242, (%edi)
0x40a075: mov %eax,%edi

0x40a077: mov 0x24(%edi),%edi
0x40a07a: movl $Oxffff0001,0xc(%edi)
0x40a081: movl $0x23434343,0x8(%edi) ; 2nd constant
0x40a088: mov %eax,%edi

0x40a08a: mov 0x24(%edi),%edi

0x40a08d: movl $O0xTffff0001,0x14(%edi)

0x40a094: movl $0x34444444,0x10(%edi) ; 3rd constant
0x40a09b: mov %eax,%edi

0x40a09d: mov 0x24(%edi),%edi

0x40a0a0: movl $O0xTfff0001,0x1c(%edi)

0x40a0a7: movl $0x45454545,0x18(%edi) ; 4th constant

create an array

$edi holds returned array object
load obj—>slots in to %$edi
JSVAL_TYPE_INT32 to object->slots[1]
1st constant into object->slots[0]

"E w"E uNE wuE wunE

JIT Spray

® JIT Spray in Firefox through TraceMonkey

® Floating point games

® -6.828527034422786e-229 = 0x920909209090902090
® 0Ox90 = x86 NOP instruction

var a = —6.828527034422786e-229;

var b = —-6.828527034422786e-229,

var ¢ = —6.828527034422786e-229;

var d = —-6.828527034422786e-229,

0x429eda: movl $0x90909090, 0x5c0 (%esi)

0x429ee4: movl $0x90909090,0x5c4(%sesi)

O0x429%9eee: movl $0x90909090,0x5c8(%esi)

0x429ef8: movl $0x90909090, 0x5cc(%esi)

0x429f02: movl $0x90909090,0x5d0(%esi)

0x429f0c: movl $0x90909090,0x5d4 (%esi)

0x429f16: movl $0x90909090,0x5d8 (%esi) "[L."
0x429720: movl $8x90909090,0x5dc(%esi) 144

S ECURITY

JIT Metadata Overwrite [©

® Firefox TraceMonkey Codelist class
® *Next *Lower *Terminator pointers at static offsets
® Creates a doubly linked list of JIT pages
® Overwriting these will give you an arbitrary 4 byte write

® Similar to the original heap unlink attacks

S

/

S ECURITY

Memory Protections

® Nearly all JITs we surveyed produce RWX pages
® Weakens DEP

® Breaks assumptions behind copy-on-write mirror pages

® Knowledge of both RW/RX pages not required

® Blind Execution

® Overwrite RWX JIT page contents

® Trigger the original JIT'd script
® This isn't going away for Inline Cache designs without some performance impact

d
W

-y
g

/

S ECURITY

Memory Protections

® RWX pages can be reused
® Array index read/write
® Point into JIT page
® Write raw shell code, trigger JavaScript

® Read branch addresses back to C++ in a DLL

® QOverflows

® Heap overflow in adjacent RW page

Firefox 5.0
02808000-0280c000 rw-p Read/Write Heap memory
® ROP 0280c000-0281c000 rwxp Read/Write/Execute JIT page
® No need to find that VirtualAlloc stub "[’_2‘
1
sy

/

S ECURITY

e ENE

® ROP Gadgets are small sequences of code found in an existing
DLL or .text

® Combine them to get arbitrary code execution

® Predictable instructions on JIT pages at static offsets

® JIT's produce lots of native code

® You aren’t constrained to just one library mapping

® Does not require controllable constants like JIT Spray

P
s

| <

S ECURITY

e ENE

® Finding usable galJITs depends on the JIT design

® ret or branch-based control flow?
® inline caching

® (in)frequent calls to C++ stubs

® How does script function A get turned into native code B where
native code B contains gaJIT X

® Requires the right source code to generate them

® Requires a specific gaJlT-finding tool

§'a

/

S ECURITY

JIT Feng Shui

® Our version of Heap Feng Shui... except for JITs

® Heap Feng Shui
® Alex Sotirov 2007

® [nfluence the heap layout via JavaScript

® JIT Feng Shui

® Untrusted input influences JIT output

® Specific inputs create predictable code patterns

® We could have called it jiuJITsu..

7
‘ﬂ’.':

-y
g

/

S ECURITY

JIT Feng Shui

® Controlling register contents with a TraceMonkey gaJIT

galJIT at offset 0x9el8 (10 matches)
pop esl1 ; pop edli ; pop ebx ; pop ebp ; ret

¢|ILVM

® Portable shellcode!

P

/

S ECURITY

JIT Feng Shui + gaJlTs

® Circumvents constant blinding
® Defeated by NOP padding
® Much harder with allocation restrictions
® Difficult and noisy
® Requires a JIT spray to map enough pages

® Not researched on other JITs / architectures yet

P

/

S ECURITY

JIT Protections

® The OS provides some basic protections to the process
® (ASLR) Address Space Layout Randomization
® (DEP) Data Execution Prevention
® Code Signing
® JITs can negate these by design
® JIT engines have no control over their input

® ... but completely control their output

P
s

| <

S ECURITY

Emission Randomization

® Memory for emission is allocated via mmap or VirtualAlloc

® VirtualAlloc is not randomized by default

® You can request the address you want mapped

® V8 and IE9 do this

® mmap on Linux randomizes anonymous mappings

® Extend ASLR to compiler-allocated memory

P
4

/

S ECURITY

Randomization

64 0

32

Randomization

Allocation Randomization

0

64
32

P

/

S ECURITY

Randomization

® |[ntra-page offsets (bottom 10 bits) are still predictable

® Since you're emitting code, you can shift each function emitted
by inserting NOPs

P
4

/

S ECURITY

Randomization

Allocation Randomization NOP Padding
64 0
32

P
4

/

S ECURITY

Randomization

® Function emission is still predictable

® |[f you're batching the functions you’re emitting, you can shuffle
the order at which they're produced

P
4

/

S ECURITY

Randomization

Allocation Randomization Function Shuffling NOP Padding
64 0
32

A
‘ﬂ’.':

-y
g

/

S ECURITY

Guard Pages

® Firefox 5.0 adjacent heap and JIT pages

02808000- rw—p Read/Write heap memory
—-0281c000 rwxp Read/Write/Execute JIT page

® |[f an overflow occurs in the first RW heap mapping, an attacker
can write native code into the RWX page

® Guard pages prevent heap overflows from writing to RWX JIT
pages

02808000-0280c000 rw—p Read/Write heap memory

0280c000-0281c000 r——p Read Only memory ',,;.
0281c000-0282c000 rwxp Read/Write/Execute JIT page ‘!457

/

S ECURITY

Constant Splitting

® 4-byte constants allow room to insert instructions on x86
® Chained 4-byte chunks allows for a stage 1 payload

® Solution: Fold large constants into 2-byte maximum constants
and reassemble at runtime.

® Problem: If the instructions are predictable an attacker can
bypass this by injecting the right constants

® V8 did this for a while, now they use constant blinding

§'a

7

S ECURITY

Constant Blinding

® XOR all untrusted immediate values by a secret cookie

® Generate a random value at startup

® untrusted immediate @ secret cookie

® Emit code that XORs the value at runtime

mov eax, 0x84521310
X0r eax, 0x84433123
s

=

/

X0r eax, 0x00112233 —_—

S ECURITY

Allocation Restrictions

® JIT Spray requires mapping a lot of memory
® Capping the number of pages helps mitigate this attack

® For language runtimes, some info about code can be known
ahead of time

® code size

® |ibraries used

® Unfortunately, this protection mechanism makes more sense for
browsers than language runtimes

A
‘ﬂl'*.-

4

7

S ECURITY

JIT Comparison

aeger Trace ; ;
V8 |E9 Jaeg LLVM JVM Flash / Tamarin = Opera Safari
M[e1115)% M[e1115)%
Secure Page \ R R R R \ . \
Permissions
Guard Pages > > ’ . . A R A
JIT Page . : 5 A) ; :
Randomization
Constant Folding > > > > > > > > >
Constant Blinding > > > > > > >
Allocation R
Restrictions
Random NOP ~ ~ - - ~ R R
Insertion
Random Code Base X . N
Offset P
W=

JIT Comparison

® |[E9 doesn’t require guard pages

® Tamarin/TraceMonkey (NanoJIT) implemented random NOP
padding but forgot to enable it

® Guard pages in Chrome are brand new as of 8/4/2011

® As a result of our research, Firefox should be implementing
some of these very soon

P
4

/

S ECURITY

Jitter

® jitter is our toolchain for:

® Tracing JIT code emission
® Tracking JIT memory permissions
® JIT Fuzzer coverage

® Searching for gaJlTs

® Implemented as a set of Nerve scripts

® Uses ragweed debugging framework

® We also wrote a native Java JIT hook

P
s

| <

S ECURITY

Jitter

® Support for LLVM and Firefox JITs

® Nerve breakpoint files for specific JIT hook points
® |nteract with the process at each breakpoint with Ruby

® Extract arguments, data, instructions

® Generic script for tracking JIT page allocations
® Just needs a list of call sites

® Can be used to start support of new JIT engines

® gaJlIT finder is built-in

® Receives an array of JIT pages

® Output locations for repeated galiTs

® Easily repurposed for other ROP tools "'Lg

4

/

S ECURITY

fuzzer(s)

® Fuzzing JIT engines is difficult

® Testcases must have valid syntax

® Multiple components before you hit the JIT
® Rubinius Fuzzer (LLVM JIT)
® JavaScript grammar fuzzer (Firefox JITs)

® Fuzzer driver framework

P

/

S ECURITY

fuzzing bitcode

® We attempted to fuzz LLVM bitcode directly

® Dumb-fuzzing at first

® Way too many coredumps to go through

® | LVM’s BitcodeReader was not designed with security in mind

® Found a parsing bug; submitted patch

§'a

/

S ECURITY

rubyfuzz

® Ruby fuzzer for targeting Rubinius

® Generated Ruby code from a subset of Ruby grammar
® Avoided Rubinius VM to target other Ruby implementations

® MacRuby, JRuby, YARV, MRI, etc

® Fuzzer driver also in Ruby (Hoke)

P
s

| <

S ECURITY

rubyfuzz

® Modeled Ruby grammar as Ruby objects

® Terminals —> Arrays

® Non-terminals —» Generators

® Permuted method invocations, block definitions, block
invocations and other Ruby constructs

® Seeded with common Ruby idioms

P

/

S ECURITY

JavaScript Fuzzer

® JavaScript Grammar fuzzer for Firefox JITs
® Targets the JIT and interpreter only; not the DOM

® Describe JavaScript in flat text files

® types, methods, properties, keywords, and operators

® Parse text files and serialize into Ruby OpenStruct

® |[terate over the grammar

® Follow JSOP bytecode instructions to

® Fast Paths
® Inline Caches

® C++ Stubs

® Hundreds of millions of iterations through ./js

d
W

-y
g

/

S ECURITY

A bug our fuzzer found

® Our fuzzer found a critical bug in SpiderMonkey

a = new Array();

a. length = 4294967240,

b = function bf(prev, current, index, array) {
document.write(current):
current[0] = "hello";

s

a.reduceRight(b, 1, 2, 3);

® Info Leak: read arbitrary data from current

® Code Execution: call a method on current
P
4

-y
g

/

S ECURITY

fuzzer(s)

® A note on fuzzing for info leaks

® Fuzzing should be fast

® Instrumentation to monitor individual memory access is slow

® Differential fuzzing for info leaks

® Can be generalized to multiple implementations of any language spec

® Two JavaScript implementations
® d8 (v8)/ js (Mozilla)
® Feed them identical testcases

® Record the output

: 9
® What is the expected output type/value? [’L‘Qg

/

S ECURITY

Questions

