
Attacking Client Side JIT Compilers

October 10, 2011
Revision 1.3

http://www.matasano.com/research/jit/

1

1

http://www.matasano.com/research/jit/
http://www.matasano.com/research/jit/

Introduction

Chris Rohlf - Principal Security Consultant

@chrisrohlf
chris@matasano.com

Yan Ivnitskiy - Senior Security Consultant

@yan
yan@matasano.com

http://www.matasano.com/research
2

2

Overview

• Introduction
• Firefox JIT(s)
• LLVM JIT
• Code Emission Bugs
• Exploitation Primitives
• Runtime Hardening
• Engine Comparison
• Our Tools and Techniques

3

3

Introduction to JITs

• Interpreters and JIT Engines

• Parse high level languages

• Generate bytecode

• Optimize and compile bytecode to native code

• They are everywhere

• Browsers

• Language runtimes (Java, Ruby, C#)

4

4

Introduction to JITs

User

Developer10 PRINT "HELLO WORLD"
20 GOTO 10

pushq %rbp
movq %rsp,%rbp
leaq 0x0041(%rip),%rdi
movl $0x0000,%eax
callq 0x10f36

"Compiler"

5

5

Introduction to JITs

User

Developer10 PRINT "HELLO WORLD"
20 GOTO 10

pushq %rbp
movq %rsp,%rbp
leaq 0x0041(%rip),%rdi
movl $0x0000,%eax
callq 0x10f36

"Compiler"

6

6

Introduction to JITs

JIT

Developer10 PRINT "HELLO WORLD"
20 GOTO 10

pushq %rbp
movq %rsp,%rbp
leaq 0x0041(%rip),%rdi
movl $0x0000,%eax
callq 0x10f36

"Compiler"

7

7

Introduction to JITs

JIT

Developer

"Compiler"

Lexer Parser IR
Generator

IR
Optimizer

Target
Generator

10 PRINT "HELLO WORLD"
20 GOTO 10

pushq %rbp
movq %rsp,%rbp
leaq 0x0041(%rip),%rdi
movl $0x0000,%eax
callq 0x10f36

8

8

Introduction to JITs

a = new Array();

JSOP_NEWARRAY

mov $0x8963778,%edx
lea 0x50(%ebx),%ecx
mov %ecx,0x14(%esp)
mov %esp,%ecx
mov %ebx,0x1c(%esp)
movl $0x8962ec5,0x18(%esp)
call 0x8265670

9

9

Introduction to JITs

• Compilers and JITs have been around for a while and come in a
few different designs and architectures

10

10

Introduction to JITs

• Bytecode / Bitcode / Intermediate Representation (IR)

• Both trusted and untrusted

• Expressive and bloated (slower)

• Simple and slim (faster)

• Potentially usable to an attacker

• Overwrite bytecode

11

11

Introduction to JITs

• Untrusted bytecode

• Can be delivered from untrusted sources

• Flash, CLR, LLVM

• Completely external to the compiler

• Trusted bytecode

• Produced internally by a trusted front end

• SpiderMonkey

• Still potentially usable to an attacker with control of the process

12

12

Introduction to JITs

• Tracing JIT design

• Only JIT CPU-intensive code

• Enables Optimizations

• Types are generally known from tracing

13

13

TraceMonkey

• Introduced in Firefox 3.5

• Tracing JIT

• Uses NanoJIT as a backend assembler

14

14

TraceMonkey

• TraceMonkey JITs hot code blocks

• The recorder traces execution of SpiderMonkey IR

• 8 Iterations before TraceMonkey kicks in

• Produces trace trees

• Emits optimized LIR for NanoJIT to compile

• Doesn’t handle type changes well

15

15

TraceMonkey

• CodeAlloc class

• Handles allocating JIT pages that will hold code

• Allocates memory RWX

• CodeList class

• Inline meta-data for tracking the location of code chunks within JIT pages

16

16

Introduction to JITs

• Method

• JITs entire functions / methods

• Usually generates unoptimized code

• Not based on previous execution runs

• Slow type lookups are usually required

17

17

JaegerMonkey

• Introduced in Firefox 4.0

• Method JIT

• Uses the Nitro assembler backend from WebKit

• SpiderMonkey bytecode Native Code

• Uses an Inline Cache for handling type changes in property
accesses

18

18

JaegerMonkey

• Fast paths are native code emitted by the JIT

• Pure native code emitted by the JIT for predefined operations

• Slow paths are through the execution of bytecode

• Inline cache hits sometimes have to go back through slow bytecode execution

• Stub calls are into C++ code from JIT pages

• Typically exist to augment a fast path

19

19

JaegerMonkey

• ExecutableAllocator class

• Handles allocating JIT pages to hold code

• Allocates memory RWX

• ExecutablePool class

• Manages the larger page size allocations into pools to hold native code

• Pools are chosen based on the size of code that needs to be stored

20

20

Inline Caching

• Inline Caching

• JavaScript is dynamically typed

• How do you JIT a generic function that handles multiple types?

• Inline caches handle rewriting methods or property accesses at
runtime to handle different and unexpected types

function blah(var b) {
for(i=0; i<10; i++) {
b += i;

}
}

blah(“hello”);
blah([0, 1, 2, 3]);

21

21

Inline Caching

22

22

LLVM

• A suite of libraries, an instruction set, and a collection of tools
designed around compilation.

• A set of independent components from the start

• Initially used GCC as a front end

• Now supports C, C++ and Objective-C natively

• Many other compiler projects now support LLVM

• Python, Ruby, Haskell, PHP, etc

• Popular for implementing compiler back ends

23

23

LLVM

hello.c

Clang

Optimizer

Optimizer

JITLinkerObject
File

hello.chello.c

Source

IR

IR

IR

mov eax, 0x1234
jmp -0x5

Native

24

24

LLVM

hello.c

Clang

Optimizer

Optimizer

JITLinkerObject
File

hello.chello.c

Source

IR

IR

IR

mov eax, 0x1234
jmp -0x5

Native

25

25

LLVM

• Typical integration progression:

• I have a project that compiles something

• Need to make it faster or

• Need a backend to actually produce native code.

• Integrate with LLVM!

26

26

LLVM Integration

• “The LLVM JIT and You”

• Popular integration strategies

• Emit IR directly, create a Module

• MacRuby, GHC

• Have your own VM instruction set, translate instruction by instruction to LLVM
equivalents, then emit

• Rubinius, ClamAV

27

27

LLVM JIT

• Assume a Module is created

• Connect a Module to an ExecutionEngine

• Request a handle to a function, ask the ExecutionEngine to run it

• ExecutionEngine emits code for the function, and stubs for all
outgoing calls to non-emitted code

28

28

LLVM JIT

Platform
Independent

Platform
Dependent

ExecutionEngine
JIT

JITState

JITCodeEmitter JITMemoryManager

Resources

TargetJITInfo
X86JITInfo

Memory

29

29

JITs and Security

• Compiling traditional executables is typically done by developers

• Code compilation is a trust boundary

• You’ve accepted your vendor’s code and binary

• But now you’re compiling my untrusted code

30

30

Incorrect Code Emission

• JITs don’t always produce perfect code

• Compiler bugs are often caught during development and testing

• What can happen when the JIT emits incorrect code?

31

31

Incorrect Code Emission

• What usually triggers them?

• Type Confusion

• Use after free

• Integer over/underflows (miscalculation of code paths)

• Incorrect logic during code emission

• Should incorrect JIT code emissions be their own bug class?

• Depends on the root cause

• Not for us to decide, but should be debated

32

32

Incorrect Code Emission

• Java x64 JIT bug patched on June 18th, 2011

• Intended code emission:

• Unintended code emission:

addq %rsp,0xffffff2b ; shift the stack pointer!
popfq ; pop 64 bits from stack+0xffffff2b
 ; load the lower 32 bits into RFLAGS

addq (%rsp),0xffffff2b ; add 0xffffff2b to the value at %rsp
popfq ; pop 64 bits from stack, load
 ; the lower 32 bits into RFLAGS

33

33

Incorrect Code Emission

• Many examples

• Mozilla Bugzilla ID 635295 (Firefox 4.0 Beta)

• Execution of an invalid branch due to an inline cache that existed for a free’d object

• MS11-044 Microsoft .NET CLR JIT

• The JIT produced code that confused an object as NULL or non-NULL

• This was a great logic bug example!

34

34

JIT Primitives + Traditional Bugs

• JIT engines can be:

• the source of vulnerabilities

• a means to exploit them

35

35

Exploitation Primitives

• JITs introduce unique exploitation primitives that would
otherwise not be present in an application

• JIT Spray

• RWX Page Permissions

• Reusable code sequences at predictable addresses

36

36

JIT Spray

• Dion Blazakis 2010

• Flash ActionScript

• Create enough constants to contain native shell code, link
together by semantic NOPs

• Transfer execution to mid-instruction, set up a stage 2, and
begin executing

• I’m told by people smarter than me you can do it in 2 bytes

37

37

JIT Spray

• JIT Spray in Firefox through JaegerMonkey

• Not perfect, JaegerMonkey emits unoptimized code

• Lots of bytes in the way we can’t control

var constants = [0x12424242, 0x23434343, 0x34444444, 0x45454545, 0x56464646,
0x67474747, 0x78484848, /test/]

0x40a05e: call 0x82d1820 NewInitArray ; create an array
0x40a063: mov %eax,%edi ; $edi holds returned array object
0x40a065: mov 0x24(%edi),%edi ; load obj->slots in to $edi
0x40a068: movl $0xffff0001,0x4(%edi) ; JSVAL_TYPE_INT32 to object->slots[1]
0x40a06f: movl $0x12424242,(%edi) ; 1st constant into object->slots[0]
0x40a075: mov %eax,%edi
0x40a077: mov 0x24(%edi),%edi
0x40a07a: movl $0xffff0001,0xc(%edi)
0x40a081: movl $0x23434343,0x8(%edi) ; 2nd constant
0x40a088: mov %eax,%edi
0x40a08a: mov 0x24(%edi),%edi
0x40a08d: movl $0xffff0001,0x14(%edi)
0x40a094: movl $0x34444444,0x10(%edi) ; 3rd constant
0x40a09b: mov %eax,%edi
0x40a09d: mov 0x24(%edi),%edi
0x40a0a0: movl $0xffff0001,0x1c(%edi)
0x40a0a7: movl $0x45454545,0x18(%edi) ; 4th constant

38

38

JIT Spray

• JIT Spray in Firefox through TraceMonkey
• Floating point games

• -6.828527034422786e-229 = 0x9090909090909090

• 0x90 = x86 NOP instruction

 var a = -6.828527034422786e-229;
 var b = -6.828527034422786e-229;
 var c = -6.828527034422786e-229;
 var d = -6.828527034422786e-229;

 0x429eda:"movl $0x90909090,0x5c0(%esi)
 0x429ee4:"movl $0x90909090,0x5c4(%esi)
 0x429eee:"movl $0x90909090,0x5c8(%esi)
 0x429ef8:"movl $0x90909090,0x5cc(%esi)
 0x429f02:"movl $0x90909090,0x5d0(%esi)
 0x429f0c:"movl $0x90909090,0x5d4(%esi)
 0x429f16:"movl $0x90909090,0x5d8(%esi)
 0x429f20:"movl $0x90909090,0x5dc(%esi)

39

39

JIT Metadata Overwrite

• Firefox TraceMonkey CodeList class

• *Next *Lower *Terminator pointers at static offsets

• Creates a doubly linked list of JIT pages

• Overwriting these will give you an arbitrary 4 byte write

• Similar to the original heap unlink attacks

40

40

Memory Protections

• Nearly all JITs we surveyed produce RWX pages

• Weakens DEP

• Breaks assumptions behind copy-on-write mirror pages

• Knowledge of both RW/RX pages not required

• Blind Execution

• Overwrite RWX JIT page contents

• Trigger the original JIT’d script

• This isn’t going away for Inline Cache designs without some performance impact

41

41

Memory Protections

• RWX pages can be reused
• Array index read/write

• Point into JIT page

• Write raw shell code, trigger JavaScript

• Read branch addresses back to C++ in a DLL

• Overflows

• Heap overflow in adjacent RW page

• ROP

• No need to find that VirtualAlloc stub

Firefox 5.0
 02808000-0280c000 rw-p Read/Write Heap memory
 0280c000-0281c000 rwxp Read/Write/Execute JIT page

42

42

gaJITs

• ROP Gadgets are small sequences of code found in an existing
DLL or .text

• Combine them to get arbitrary code execution

• Predictable instructions on JIT pages at static offsets

• JIT’s produce lots of native code

• You aren’t constrained to just one library mapping

• Does not require controllable constants like JIT Spray

43

43

gaJITs

• Finding usable gaJITs depends on the JIT design

• ret or branch-based control flow?

• inline caching

• (in)frequent calls to C++ stubs

• How does script function A get turned into native code B where
native code B contains gaJIT X

• Requires the right source code to generate them

• Requires a specific gaJIT-finding tool

44

44

JIT Feng Shui

• Our version of Heap Feng Shui... except for JITs

• Heap Feng Shui

• Alex Sotirov 2007

• Influence the heap layout via JavaScript

• JIT Feng Shui

• Untrusted input influences JIT output

• Specific inputs create predictable code patterns

• We could have called it jiuJITsu..

45

45

JIT Feng Shui

• Controlling register contents with a TraceMonkey gaJIT

• LLVM

• Portable shellcode!

gaJIT at offset 0x9e18 (10 matches)
pop esi ; pop edi ; pop ebx ; pop ebp ; ret

46

46

JIT Feng Shui + gaJITs

• Circumvents constant blinding

• Defeated by NOP padding

• Much harder with allocation restrictions

• Difficult and noisy

• Requires a JIT spray to map enough pages

• Not researched on other JITs / architectures yet

47

47

JIT Protections

• The OS provides some basic protections to the process

• (ASLR) Address Space Layout Randomization

• (DEP) Data Execution Prevention

• Code Signing

• JITs can negate these by design

• JIT engines have no control over their input

• ... but completely control their output

48

48

Emission Randomization

• Memory for emission is allocated via mmap or VirtualAlloc

• VirtualAlloc is not randomized by default

• You can request the address you want mapped

• V8 and IE9 do this

• mmap on Linux randomizes anonymous mappings

• Extend ASLR to compiler-allocated memory

49

49

Randomization

. . . .

64
32

0

50

50

Randomization

. . . .

64
32

0

Allocation Randomization

51

51

Randomization

• Intra-page offsets (bottom 10 bits) are still predictable

• Since you’re emitting code, you can shift each function emitted
by inserting NOPs

52

52

Randomization

. . . .

64
32

0

Allocation Randomization NOP Padding

53

53

Randomization

• Function emission is still predictable

• If you’re batching the functions you’re emitting, you can shuffle
the order at which they’re produced

54

54

Randomization

. . . .

64
32

0

Allocation Randomization NOP PaddingFunction Shuffling

55

55

Guard Pages

• Firefox 5.0 adjacent heap and JIT pages

• If an overflow occurs in the first RW heap mapping, an attacker
can write native code into the RWX page

• Guard pages prevent heap overflows from writing to RWX JIT
pages

 02808000-0280c000 rw-p Read/Write heap memory
 0280c000-0281c000 rwxp Read/Write/Execute JIT page

 02808000-0280c000 rw-p Read/Write heap memory
 0280c000-0281c000 r--p Read Only memory
 0281c000-0282c000 rwxp Read/Write/Execute JIT page

56

56

Constant Splitting

• 4-byte constants allow room to insert instructions on x86

• Chained 4-byte chunks allows for a stage 1 payload

• Solution: Fold large constants into 2-byte maximum constants
and reassemble at runtime.

• Problem: If the instructions are predictable an attacker can
bypass this by injecting the right constants

• V8 did this for a while, now they use constant blinding

57

57

Constant Blinding

• XOR all untrusted immediate values by a secret cookie

• Generate a random value at startup

• untrusted immediate ⊕ secret cookie

• Emit code that XORs the value at runtime

xor eax, 0x00112233 mov eax, 0x84521310
xor eax, 0x84433123

58

58

Allocation Restrictions

• JIT Spray requires mapping a lot of memory

• Capping the number of pages helps mitigate this attack

• For language runtimes, some info about code can be known
ahead of time

• code size

• libraries used

• Unfortunately, this protection mechanism makes more sense for
browsers than language runtimes

59

59

JIT Comparison

V8 IE9 Jaeger
Monkey

Trace
Monkey

LLVM JVM Flash / Tamarin Opera Safari

Secure Page
Permissions

Guard Pages

JIT Page
Randomization

Constant Folding

Constant Blinding

Allocation
Restrictions

Random NOP
Insertion

Random Code Base
Offset

60

60

JIT Comparison

• IE9 doesn’t require guard pages

• Tamarin/TraceMonkey (NanoJIT) implemented random NOP
padding but forgot to enable it

• Guard pages in Chrome are brand new as of 8/4/2011

• As a result of our research, Firefox should be implementing
some of these very soon

61

61

jitter

• jitter is our toolchain for:

• Tracing JIT code emission

• Tracking JIT memory permissions

• JIT Fuzzer coverage

• Searching for gaJITs

• Implemented as a set of Nerve scripts

• Uses ragweed debugging framework

• We also wrote a native Java JIT hook

62

62

jitter

• Support for LLVM and Firefox JITs

• Nerve breakpoint files for specific JIT hook points

• Interact with the process at each breakpoint with Ruby

• Extract arguments, data, instructions

• Generic script for tracking JIT page allocations

• Just needs a list of call sites

• Can be used to start support of new JIT engines

• gaJIT finder is built-in

• Receives an array of JIT pages

• Output locations for repeated gaJITs

• Easily repurposed for other ROP tools

63

63

fuzzer(s)

• Fuzzing JIT engines is difficult

• Testcases must have valid syntax

• Multiple components before you hit the JIT

• Rubinius Fuzzer (LLVM JIT)

• JavaScript grammar fuzzer (Firefox JITs)

• Fuzzer driver framework

64

64

fuzzing bitcode

• We attempted to fuzz LLVM bitcode directly

• Dumb-fuzzing at first

• Way too many coredumps to go through

• LLVM’s BitcodeReader was not designed with security in mind

• Found a parsing bug; submitted patch

65

65

rubyfuzz

• Ruby fuzzer for targeting Rubinius

• Generated Ruby code from a subset of Ruby grammar

• Avoided Rubinius VM to target other Ruby implementations

• MacRuby, JRuby, YARV, MRI, etc

• Fuzzer driver also in Ruby (Hoke)

66

66

rubyfuzz

• Modeled Ruby grammar as Ruby objects

• Terminals Arrays

• Non-terminals Generators

• Permuted method invocations, block definitions, block
invocations and other Ruby constructs

• Seeded with common Ruby idioms

67

67

JavaScript Fuzzer

• JavaScript Grammar fuzzer for Firefox JITs

• Targets the JIT and interpreter only; not the DOM

• Describe JavaScript in flat text files

• types, methods, properties, keywords, and operators

• Parse text files and serialize into Ruby OpenStruct

• Iterate over the grammar

• Follow JSOP bytecode instructions to

• Fast Paths

• Inline Caches

• C++ Stubs

• Hundreds of millions of iterations through ./js
68

68

A bug our fuzzer found

• Our fuzzer found a critical bug in SpiderMonkey

a = new Array();
a.length = 4294967240;
b = function bf(prev, current, index, array) {
 document.write(current);
 current[0] = "hello";
}
a.reduceRight(b, 1, 2, 3);

• Info Leak: read arbitrary data from current

• Code Execution: call a method on current

69

69

fuzzer(s)

• A note on fuzzing for info leaks

• Fuzzing should be fast

• Instrumentation to monitor individual memory access is slow

• Differential fuzzing for info leaks

• Can be generalized to multiple implementations of any language spec

• Two JavaScript implementations

• d8 (v8) / js (Mozilla)

• Feed them identical testcases

• Record the output

• What is the expected output type/value?

70

70

Questions

?

71

71

